Definition:

Seien \vec{a} und \vec{b} Vektoren im \mathbb{R}^3 mit den Komponenten $a_k \in \mathbb{R}$ und $b_k \in \mathbb{R}$. Das Vektorprodukt $\vec{a} \times \vec{b}$ ist gegeben durch

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - b_2a_3 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$
(1)

Satz:

Der Vektor $\vec{a} \times \vec{b}$ steht sowohl auf \vec{a} als auch auf \vec{b} senkrecht.

Beweis:

$$\begin{pmatrix} a_2b_3 - b_2a_3 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \circ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = a_1a_2b_3 - a_1a_3b_2 + a_2a_3b_1 - a_1a_2b_3 + a_1a_3b_2 - a_2a_3b_1 = 0$$

offenbar steht $\vec{a} \times \vec{b}$ senkrecht auf \vec{a}

$$\begin{pmatrix} a_2b_3 - b_2a_3 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_2b_1b_3 - b_1b_2a_3 + a_3b_1b_2 - a_1b_2b_3 + a_1b_2b_3 - a_2b_1b_3 = 0$$

und $\vec{a} \times \vec{b}$ senkrecht auf \vec{b}

Weitere Eigenschaften des Vektorprodukts:

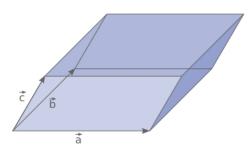
Für den Betrag $\left| \vec{a} \times \vec{b} \right|$ des Vektorprodukts gilt

$$\left| \vec{a} \times \vec{b} \right| = \mid \vec{a} \mid \mid \vec{b} \mid \sin \varphi$$

dabei ist φ der Winkel zwischen den Vektoren \vec{a} und \vec{b} . Insbesondere ist durch $\left| \vec{a} \times \vec{b} \right|$ der **Flächeninhalt** des von \vec{a} und \vec{b} aufgespannten Parallelogramms gegeben.

Spatprodukt:

Seien \vec{a} , \vec{b} und \vec{c} Vektoren im \mathbb{R}^3 . Das Spatprodukt der Vektoren ist definiert als $(\vec{a} \times \vec{b}) \circ \vec{c}$. Wenn \vec{a} , \vec{b} und \vec{c} linear unabhängig sind, so spannen die Vektoren ein Parallelepiped (Spat) auf:



Der Betrag des Spatproduktes gibt das Volumen des Spats an:

$$V = \left| \left(\vec{a} \times \vec{b} \right) \circ \vec{c} \right|$$

Normalenvektor über ein Gleichungssystem berechnen:

Seien \vec{a} und \vec{b} Vektoren im \mathbb{R}^3 mit den Komponenten $a_k \in \mathbb{R}$ und $b_k \in \mathbb{R}$. Gesucht ist ein Vektor \vec{n} , der senkrecht auf \vec{a} und \vec{b} steht. Sei $\vec{n} = (x \mid y \mid z)^{\top}$ dann muss offenbar $\vec{a} \circ \vec{n} = 0$ und $\vec{b} \circ \vec{n} = 0$ gelten, also:

$$a_1x + a_2y + a_3z = 0$$

$$b_1x + b_2y + b_3z = 0$$
(2)

Wenn man x eliminieren will ergibt sich durch geeignete Multiplikation

$$a_1b_1x + a_2b_1y + a_3b_1z = 0$$
$$a_1b_1x + a_1b_2y + a_1b_3z = 0$$

und damit

$$(a_2b_1 - a_1b_2)y + (a_3b_1 - a_1b_3)z = 0.$$

Für y erhält man

$$y = -\frac{a_3b_1 - a_1b_3}{a_2b_1 - a_1b_2}z = \frac{a_3b_1 - a_1b_3}{a_1b_2 - a_2b_1}z$$

Bei zwei Gleichungen mit drei Variablen darf eine Variable gewählt werden. Wähle

$$z = a_1 b_2 - a_2 b_1 \tag{3}$$

oder $z = (a_1b_2 - a_2b_1)t$ mit $t \in \mathbb{R}$. Dadurch wird

$$y = a_3b_1 - a_1b_3$$

und es fehlt nur noch die x-Komponente. Wir beginnen wieder oben bei (2), aber eliminieren jetzt die y-Koordinate:

$$a_1b_2x + a_2b_2y + a_3b_2z = 0$$
$$a_2b_1x + a_2b_2y + a_2b_3z = 0$$

es ergibt sich

$$(a_1b_2 - a_2b_1)x + (a_3b_2 - a_2b_3)z = 0$$

und damit

$$x = -\frac{a_3b_2 - a_2b_3}{a_1b_2 - a_2b_1}z = \frac{a_2b_3 - a_3b_2}{a_1b_2 - a_2b_1}z \stackrel{(3)}{=} a_2b_3 - a_3b_2.$$

Der Normalenvektor \vec{n} ist also

$$\vec{n} = \begin{pmatrix} a_2b_3 - b_2a_3 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$