VEKTOREN Dr. Günther

Ein Punkt P im \mathbb{R}^2 habe die Koordinaten $(p_1 \mid p_2)$. Der Vektor $\vec{p} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ ist der "Richtungs-Pfeil" vom Koordinatenursprung $(0 \mid 0)$ zum Punkt P und wird auch mit $\vec{p} = \overrightarrow{OP}$ bezeichnet.

1. Aufgabe:

Gegeben sind die Punkte $A(3 \mid 4)$ und $B(7 \mid 2)$

- (a) Zeichne die Punkte A und B sowie die Vektoren $\vec{a} = \overrightarrow{0A}$ und $\vec{b} = \overrightarrow{0B}$ in ein Koordinatensystem.
- (b) Sei $t \in \mathbb{R}$ mit den Werten $t \in \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 1, \frac{3}{2}, 2, -\frac{1}{2}, -1\right\}$. Berechne für die angegebenen Werte t jeweils den Vektor

$$\overrightarrow{0P} = \overrightarrow{0A} + t \overrightarrow{AB} \tag{1}$$

und zeichne den zugehörigen Punkt P mit in das Koordinatensystem.

- (c) Zeichne den Punkt $C(2 \mid 1)$ mit in das Koordinatensystem. Gibt es einen Parameter t, sodass sich der Vektor \overrightarrow{OC} durch (1) als $\overrightarrow{OC} = \overrightarrow{OA} + t \overrightarrow{AB}$ darstellen lässt?
- (d) Lässt sich der Ortsvektor \overrightarrow{OD} zum Punkt $D\left(8\mid\frac{3}{2}\right)$ durch (1) darstellen?
- (e) Angenommen der Ortsvektor $\overrightarrow{0Q}$ lässt sich durch $\overrightarrow{0Q} = \overrightarrow{0A} + t \overrightarrow{AB}$ darstellen, siehe (1). Es gibt also ein $t \in \mathbb{R}$, sodass die Gleichung erfüllt ist. Lässt sich dann eine Aussage über die Lage des Punktes Q machen?

