Satz:

Sei P ein Punkt im \mathbb{R}^3 mit dem Ortsvektor $\vec{p} = 0\vec{P}$. Ferner sei $t \in \mathbb{R}$, $\vec{v}, \vec{w} \in \mathbb{R}^3$ und g eine Gerade mit Ortsvektor \vec{v} und Richtungsvektor \vec{w} .

Der Abstand d vom Punkt Pzur Geraden $g:\,\vec{x}=\vec{v}+t\vec{w}$ ist durch

$$d = \frac{|(\vec{p} - \vec{v}) \times \vec{w}|}{|\vec{w}|}$$

gegeben.

Beweis:

Das Dreieck mit Grundseite $|\vec{w}|$ und Höhe d hat die Fläche:

$$A = \frac{1}{2} |\vec{w}| d \tag{1}$$

Das von den Vektoren $\vec{p}-\vec{v}$ und \vec{w} aufgespannte Parallelogramm hat die Fläche $2A=|(\vec{p}-\vec{v})\times\vec{w}|$. Damit folgt für die Fläche des Dreiecks:

$$A = \frac{1}{2} \left| (\vec{p} - \vec{v}) \times \vec{w} \right| \tag{2}$$

Durch Gleichsetzen von (1) und (2) erhält man:

$$d = \frac{|(\vec{p} - \vec{v}) \times \vec{w}|}{|\vec{w}|}$$

Bemerkung:

Die Formel kann natürlich auch benutzt werden um den Abstand von zwei parallelen Geraden zu berechnen!