Bewegungen Dr. Günther

Bei den Lösungswegen sollen die verwendeten Formeln angegeben und physikalische Einheiten berücksichtigt werden. Die Rechenwege bitte ausfühlich darstellen und einen Antwortsatz formulieren, in dem auf die Fragestellung bezug genommen wird.

	Formelzeichen	SI-Einheit
Zeit	t	s
Strecke	S	m
Geschwindigkeit	V	$\frac{\mathrm{m}}{\mathrm{s}}$

1. Aufgabe:

Ein Fahrzeug legt in drei Stunden eine Strecke von $342\,km$ zurück.

- (a) Berechne die Geschwindigkeit.
 - i. Gib das Ergebnis in km/h und m/s an.
 - ii. Begründe, warum es sich bei der berechneten Geschwindigkeit um die Durchschnittsgeschwindigkeit handelt.
- (b) Ermittle die Strecke, die das Fahrzeug in 14 Minuten zurücklegt.
- (c) Ermittle rechnerisch den Umrechnungsfaktor zwischen den Einheiten km/h und m/s.

2. Aufgabe:

Die Entfernung vom MCG Bönen zum Bahnhof Nordbögge beträgt etwa $3,9\,km$.

- (a) Ein Routenplaner veranschlagt für diese Strecke eine Zeit von 53 Minuten.
 - i. Berechne von welcher Durchschnittsgeschwindigkeit der Routenplaner dabei ausgeht.
 - ii. Beurteile, ob es sich um die Streckenplanung für Radfahrer, Autofahrer oder Fußgänger handeln könnte.
- (b) Angenommen ein Routenplaner verwendet für Radfahrer eine Geschwindigkeit von $5\frac{m}{s}$.
 - i. Gib die Geschwindigkeit in km/h an.
 - ii. Berechne welche Zeit für den Weg vom MCG Bönen zum Bahnhof Nordbögge mit dem Fahrrad veranschlagt wird.
- (c) Für ein Auto wird auf der Strecke vom MCG zum Hauptbahnhof Dortmund eine Durchschnittsgeschwindigkeit von ca. $62\frac{km}{h}$ angenommen. Die Fahrt dauert $34\,min$.
 - i. Berechne die Entfernung.
 - ii. Der Schulhof hat (bis zur Aula) eine Länge von $39\,m$. Bestimme wie lange das Auto für diese Strecke benötigt.

3. Aufgabe:

Licht bewegt sich (im Vakuum) mit einer Geschwindigkeit von c = 299792458 Metern pro Sekunde. Die Lichtgeschwindigkeit c stellt die Obergrenze für Geschwindigkeiten dar.

- (a) Alpha Centauri ist ein Dreifachsternsystem in etwa 4,34 Lichtjahren Entfernung. Das bedeutet, das Licht benötigt 4,34 Jahre für diese Entfernung. Berechne die Länge der Strecke in Kilometern. Hinweis: Für ein Julianisches Jahr wird als astronomischer Standard ein Wert von 365,25 Tagen verwendet.
- (b) Als Näherung für die Lichtgeschwindigkeit wird oft $c \approx 3 \cdot 10^8 \frac{m}{s}$ verwendet. Ermittle um wie viel Prozent dieser Näherungswert zu groß ist.
- (c) Die durchschnittliche Entfernung zwischen Sonne und Erde (elliptische Bahn) beträgt etwa 150 Millionen Kilometer. Dies entspricht einer Astronomischen Einheit AE, genauer: $1AE = 149597870700 \, m$.
 - i. Berechne wie lange das Licht der Sonne benötigt um zur Erde zu gelangen.
 - ii. Beurteile die Konsequenzen daraus, wenn nichts schneller als das Licht sein kann.
- (d) Unsere Sonne samt ihren Planeten befindet sich etwa 26000 Lichtjahre vom schwarzen Loch im Zentrum unserer Galaxie entfernt. Gib diese Entfernung in Astronomischen Einheiten an.