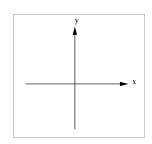
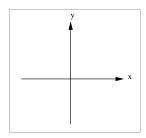
Funktionen vom Typ $f(x) = ax^n$ mit $a \in \mathbb{R}$ nennt man Potenzfunktionen. Für $n \in \mathbb{N}$ heißen die Graphen von $f(x) = ax^n$ Parabeln n-ter Ordnung, die Graphen von $f(x) = ax^{-n}$ heißen Hyperbeln n-ter Ordnung.

1. Aufgabe:

Funktionen zeichnen mit dem Taschenrechner (TR):

(a) Zeichne die Funktionen $y = x^2$ und $y = x^3$ mit dem TR und skizziere den Verlauf:





- $f\left(x\right) =x^{2}:$
- (b) Zeichne die Funktionen $f_4(x) = x^4$, $f_6(x) = x^6$ und $f_{14}(x) = x^{14}$.
- (c) Zeichne die Funktionen $f_3(x) = x^3$, $f_5(x) = x^5$ und $f_{13}(x) = x^{13}$.
- (d) Sei $k \in \{1, 2, 3, ...\}$, wie verhalten sich die Funktionen $f(x) = x^{2k}$ mit geradem Exponenten? Wie verhalten sich die Funktionen $f(x) = x^{2k+1}$? Vergleiche mit den Funktionen aus (1a):

(e) Zeichne $f(x) = x^4$, $g(x) = \frac{1}{5}x^4$, $h(x) = 3x^4$ und $l(x) = -2x^4$ in ein gemeinsames Koordinatensystem. Was bewirkt jeweils der Faktor a in $f(x) = ax^n$?

2. Aufgabe:

Wir betrachten zwei Sonderfälle von Symmetrie. Eine Funktion, dessen Graph bei Spiegelung an der y-Achse auf sich selbst abgebildet wird, weist **Achsensymmetrie** auf. Jeder Funktionswert (y-Wert) bei x stimmt dann mit dem Funktionswert bei -x überein, Beispiel: $y = x^2$. f ist **achsensymmetrisch** genau dann wenn

$$f\left(-x\right) = f\left(x\right) \tag{1}$$

für alle $x \in \mathbb{R}$. Eine Funktion, dessen Graph bei Spiegelung am Punkt $(0 \mid 0)$ auf sich selbst abgebildet wird, weist **Punktsymmetrie** (zum Koordinatenursprung) auf, Beispiel: $y = x^3$. f ist **punktsymmetrisch** (zum Koordinatenursprung) genau dann wenn

$$f\left(-x\right) = -f\left(x\right) \tag{2}$$

Natürlich ist im Allgemeinen auch Symmetrie zu anderen Punkten oder Geraden möglich.

- (a) Beweise mit (1), dass $f(x) = x^2$ achsensymmetrisch ist.
- (b) Ist $f(x) = 4x^9$ symmetrisch? (Beweis)
- (c) Ist $f(x) = x^9 + 1$ punktsymmetrisch zum Koordinatenursprung? (Beweis oder Gegenbeispiel)
- (d) Sei $a \in \mathbb{R}$ und $k \in \mathbb{N}$, beweise jeweils die Symmetrie von $f(x) = ax^{2k}$ und $f(x) = ax^{2k+1}$.

3. Aufgabe:

- (a) Zeichne $y=x^{-2},\,y=\frac{1}{x^2}$ und $y=\left(\frac{1}{x}\right)^2$ mit dem TR.
- (b) Zeichne die Hyperbeln $h_4(x) = x^{-4}$, $h_6(x) = x^{-6}$ und $h_{10}(x) = x^{-10}$.
- (c) Zeichne die Hyperbeln $h_3(x) = x^{-3}$, $h_5(x) = x^{-5}$ und $h_{11}(x) = x^{-11}$.
- (d) Wie verhalten sich Hyperbeln mit (negativem) geraden bzw. ungeraden Exponenten?
- (e) Sei $k \in \mathbb{N}$, beweise die Symmetrie von $g(x) = x^{-2k}$ und $h(x) = x^{-2k-1}$.