Wofür braucht man Exponentialfunktionen?

- Biologie: Viele natürliche Wachstumsprozesse im Anfangsstadium lassen sehr gut durch eine Exponentialfunktion beschreiben (z.B. Bakterienwachstum).
- Physik: Zerfall von radioaktivem Material.
- Finanzen: Verzinsung von Kapital über mehrere Jahre, Renten.
- Alltag: Z.B. zerfällt Bierschaum exponentiell.

Beim **exponentiellen** Wachstum erfolgt der Zuwachs **proportional zum vorhandenen Bestand**!

Eine Exponentialfunktion hat die Form

$$f(x) = c \cdot a^x$$

Wertetabelle:

x	0	1	2	3	
f(x)	c	$c \cdot a$	$c \cdot a^2$	$c \cdot a^3$	•••

Addiere 1 zum x—Wert \longleftrightarrow Multipliziere f mit der Basis a!

Offensichtlich gilt:

$$\frac{f(x+1)}{f(x)} = a$$

Eine Bakterienkul	tur verdoppelt sich	täglich.	Anfangs s	ind 250 Bak-
terien vorhanden.	Welche Gleichung	gibt die	Anzahl na	ch x Tagen?

Wie viele Baterien sind nach einer Woche vorhanden?

Ein Kapital von 300 Euro wächst pro Jahr um 5%. Welche Gleichung $K\left(x\right)$ gibt das Kapital nach x Jahren?

Wie viel ist es nach zwei Jahren?

In einem See nimmt die Lichtintensität pro Zentimeter Wassertiefe um 4,5% ab. Welche Gleichung gibt die Lichtintensität $L\left(x\right)$ in einer Wassertiefe von x cm?

Wie groß ist die Lichtintensität bei einer Wassertiefe von einem halben Meter?