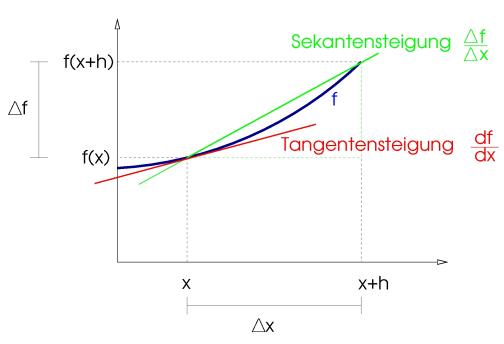
Sei $a \in \mathbb{R}$ mit a > 0, gebeben ist die Exponentialfunktion

$$f(x) = a^x$$

Die Ableitung von f kann mit der "h-Methode" berechnet werden. Die Steigung f'(x) einer Funktion f an der Stelle x ist gegeben durch

$$f'(x) = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



Wenn Δx gegen Null geht, wird die Sekante zur Tangente.

$$\frac{\Delta f}{\Delta x} \longrightarrow \frac{df}{dx}$$
 für $h \to 0$

1. Aufgabe:

- (a) Berechne möglichst genau die Ableitung von 5^x mit dem Differenzenquotienten.
- (b) Berechne die Ableitungen von 7^x ; 10^x ; 2^x ; 3^x und $0,5^x$ mit dem gleichen Verfahren.
- (c) Ermittle für welche Basis die Exponentialfunktion mit ihrer Ableitung übereinstimmt.
- (d) Berechne $\ln 5$; $\ln 7$; $\ln 10$ und $\ln 2$ mit dem GTR. Wie sieht die Ableitungsfunktion für beliebige a > 0 aus?
- (e) Entscheide begründet, ob die Exponentialfunktion a^x lokale Extremwerte oder Wendepunkte haben kann.
- (f) Berechne jeweils die Tangente und Normale der Expoentialfunktion e^x an den Stellen $x_0 = 2$ sowie $x_1 = \ln 2$.
- (g) Seien $m, b \in \mathbb{R}$. Was ergibt sich mit der Regel aus Aufgabenteil (1d) für die Ableitung von e^{mx+b} ? Hinweis: Nach den Rechenregeln für Exponenten gilt $e^{mx+b} = e^b (e^m)^x$.

2. Aufgabe:

Sinus Hyperbolicus und Kosinus Hyperbolicus sind definiert durch sinh $(x) = \frac{e^x - e^{-x}}{2}$ und $\cosh(x) = \frac{e^x + e^{-x}}{2}$.

- (a) Berechne jeweils die ersten beiden Ableitungen und gib eine Stammfunktion an. Eine Stammfunktion oder Aufleitung ist im Prinzip das Gegenteil der Ableitung. Für eine Stammfunktion F gilt also F' = f.
- (b) Untersuche die Funktionen auf Nullstellen, Extrem und Wendestellen.

3. Aufgabe:

Beweise die Ableitungsregel für a^x durch Basistransformation und Anwendung der Kettenregel.